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A B S T R A C T   

Landslides represent one of the most damaging natural hazards and often lead to unexpected casualties and 
property damage. They also continually modify our natural environment and landscapes. Knowledge of landslide 
systems is largely restricted by the stochastic nature, subjective interpretation and infrequent or spatially sparse 
surveying of landslides. Characterized by persistent daily movements of a couple of centimeters over multi- 
centennial timescales and a long narrow shape as long as ~4 km, the Slumgullion landslide in Colorado, USA 
represents an ideal natural laboratory to study slow-moving landslides. Here we demonstrate the capability of 
the highly accurate, spatially continuous airborne Synthetic Aperture Radar (SAR) system of the NASA 
Uninhabited Aerial Vehicle SAR (UAVSAR) to characterize the kinematic details of internal deformation of the 
Slumgullion landslide using SAR interferometry (InSAR). We develop a phase-based approach to automatically 
extract the boundaries of the mobile geological structures without unwrapping. Comparison with historic field 
observations from 1991 reveals the 40-m advance of the frontal toe and shift of an internal fault. The UAVSAR 
data also resolve an internal minislide (100 by 70 m), which moves more southerly than the main body at 5 mm/ 
day in the lower part of the landslide. A Light Detection and Ranging (LiDAR) Digital Elevation Model (DEM) 
shows that the minislide is associated with the opening of a 30 by 10 m pull-apart basin and bounding strike-slip 
faults. These extensional structures, nearby incised streams, and steepened local slopes helped establish the 
kinematic environment for the formation of the secondary minislide. The disparity between the UAVSAR InSAR- 
derived horizontal moving directions and the LiDAR DEM-derived slope aspects suggest that while the surface 
topography governs the first-order orientation, the local kinematics is also subject to the variable nature of 
heterogeneous landslide materials and the irregular basal bedrock surface. The landslide velocity and pre
cipitation show similar multi-annual variations. Our study demonstrates that the freely available, high-resolu
tion UAVSAR data, have great potential for characterizing landslide kinematics and other small-scale geological 
and geomorphological processes.   

1. Introduction 

Landslides represent important mass wasting processes that reshape 
global landscapes by efficiently delivering earth materials to river 
channels and continued downstream transport. Landslides also present 
natural hazards — catastrophic failures may threaten people's lives and 
damage properties. Like all the Earth's surface processes, various en
vironmental and geological factors regulate landslide properties and 
behaviors (e.g., Handwerger et al., 2019a; Hu et al., 2019; Shi et al., 
2019; Wang et al., 2018c). Landslides can be categorized into two 

groups in terms of their mobility. Dynamic failures may lead to sudden 
destruction and casualties, by the slope failure itself or from subsequent 
secondary hazards such as stream blockages, flooding and inundation. 
On the other hand, slow-moving landslides can produce substantial 
damage, but rarely result in lethal consequences; however, they have 
the potential to transform into dynamic acceleration or failures due to 
extreme weather events or strong earth shaking (e.g., Lacroix et al., 
2020; Lacroix et al., 2015; Handwerger et al., 2019a; Kang et al., 2019). 
Slow-moving landslides are usually hydrologically controlled (e.g.,  
Iverson et al., 2000; Hu et al., 2018a). Water and thus the pore pressure 
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beneath the surface is the essential agent to alter the resistance to the 
gravitational driving force and mobilize the system. In landslide-prone 
terrain with cyclic water recharge, the downslope movements often also 
reveal periodic variations which may lag behind the meteorological 
record due to the progressive generation and dissipation of pore pres
sures from the ground surface to the basal beds (e.g., Handwerger et al., 
2016; Cohen-Waeber et al., 2018; Hu et al., 2019). Besides the well- 
established linkage between water recharge and landslide speed, slide- 
internal structures, such as tensile fissures and faults, may also mod
ulate this behavior (Handwerger et al., 2019b; Krzeminska et al., 2013). 

Remote sensing data of optical imagery, Light Detection and 
Ranging (LiDAR), and Synthetic Aperture Radar (SAR) have been 
widely used for landslide mapping. Optical imagery has been mainly 
used to identify the failures and assess the secondary hazards; however, 
optical imagery is ineffective under inclement weather conditions; in 
addition, it cannot unveil the geomorphological details for vegetated 
slopes. LiDAR sensors deployed on the ground or from unmanned aerial 
vehicles are labor intensive and permit a limited distance of illumi
nating areas. Even for LiDAR mapping from a low altitude aircraft in 
ideal weather, which is usually for the landslide study, the swath width 
is only a few hundred of meters. Thus, costly LiDAR surveys are not 
practical to monitor the landslide evolution in a frequent manner. 
Interferometric SAR (InSAR) measures the regional ground displace
ment from the phase difference between SAR images collected at dif
ferent times, and it has been used in numerous geohazard applications 
including landslides, taking advantage of the all-weather, day-and- 
night, and regular acquisition routine (e.g., Bürgmann et al., 2000;  
Dong et al., 2018; Hu et al., 2017; Kim et al., 2015; Lu and Dzurisin, 
2014; Wang et al., 2018b). Pixel cross-correlation analysis can be ap
plied to both optical images and SAR amplitude images. The accuracy 
and feasibility are determined by the spatial resolution of the remote 
sensing data and the displacement gradient of the area of interest. High- 
resolution optical images such as Sentinel-2, Landsat 7/8 and 
Planet allows for abrupt change detection in velocity of ~1 m/day 
(Lacroix et al., 2020); airborne UAVSAR data allows for capturing 
moderate motions of a few cm/day (Hu et al., 2020). 

The Slumgullion landslide is a translational earth slide in the San 
Juan Mountains in Hinsdale County, southwestern Colorado, USA (e.g.,  
Crandell and Varnes, 1961; Endlich, 1876; Fleming et al., 1996;  
Fleming et al., 1999; Gomberg et al., 1995; Parise and Guzzi, 1992). 
The area of landslide deposits is composed of two distinct parts (Fig. 1). 
The first part, stretching from the headscarp on the edge of the Cannibal 
Plateau to the Lake Fork of the Gunnison River, is about 700 years old, 
as determined by radiocarbon dating of wood and soil humus at the toe, 

and is currently inactive. Lake San Cristobal was formed by damming of 
the river by the old landslide mass. The second part has reactivated 
entirely within the upper portion of the old landslide deposits along a 
distance of ~4 km from the original headscarp to a new toe 200 m 
above State Highway 149 for the past 300 years as dated by tree rings. 
A prehistoric Slumgullion landslide failure dammed Lake San Cristobal 
that is 1.5 km further downhill with some lodges built on the lakeshore. 
The persistent movements of this system at a couple of centimeters per 
day for the fastest middle segment make the Slumgullion an ideal 
natural laboratory for studying slow-moving landslides (e.g., Fleming 
et al., 1999). It is also one of the best-studied and well-instrumented 
landslides in the world. 

Previous studies at the Slumgullion landslide focused on quantifying 
the magnitude of the movements. The interactions between kinematic 
structures within the landslide have not been well explored due to in
sufficient resolution. To better understand the kinematic expressions of 
the Slumgullion, we exploit all the archived NASA Uninhabited Aerial 
Vehicle SAR (UAVSAR) data acquired during 2011–2018. We propose a 
simple and straightforward method to extract the kinematic elements 
(KEs) from the interferograms without phase unwrapping, validated by 
previously defined KEs based solely on the distribution of mapped in
ternal fault structures. We also derive the complete three-dimensional 
(3D) surface displacements during 16 independent, short time periods 
(3–16 days), and reveal an apparent first-order correlation between the 
average daily rate and the inferred water recharge and pore pressure. 
Integrated with the morphologic features of a pull-apart basin revealed 
by a LiDAR bare-earth Digital Elevation Model (DEM), we explore the 
conditions allowing for the formation of a secondary “minislide” near 
the margin of the main body of the Slumgullion. Finally, we compare 
the horizontal vectors from InSAR-derived complete 3D displacements 
with the DEM-derived slope aspects. 

2. Background of the Slumgullion landslide 

2.1. Geological setting 

The good exposure of the Slumgullion landslide allows us to identify 
a fairly complete collection of geological and kinematic features that 
are familiar from crustal-scale tectonics and can be recognized within 
this natural laboratory, including scarps, lobes, hummocks, depressions, 
flank ridges, benches, risers, tensile cracks and extensional normal 
faults, as well as contractional thrust structures traversing the landslide. 
Strike-slip structures accommodate shear along the lateral margins and 
within the slide mass (e.g., Gomberg et al., 1995). The kinematic 

Fig. 1. Topography of the Slumgullion landslide in 
southwestern Colorado, USA from USGS National 
Elevation Database. Dashed and solid closed lines 
show the margins of the prehistoric landslide that 
formed about 700 years ago and the present active 
kinematic elements (1–12), modified from (Parise 
and Guzzi, 1992; Schulz et al., 2017; Hu et al., 
2020). The line-of-sight, a.k.a., range directions, of 
four UAVSAR flight lines are marked by arrows. 
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structures bound well-defined KEs, i.e., portions of the landslide that 
move more coherently (Fig. 1). They were first determined by field 
mapping of morphometric features in 1991, not with geodetic mea
surements of active deformation (Parise and Guzzi, 1992). The internal 
deformation of the landslide also alters the landscape such as the de
velopment of ponds, and tilted, split and stretched trees (Parise and 
Guzzi, 1992; Fleming et al., 1999). The landslide materials are com
posed of hydrothermally altered volcanic rocks and are rich in clay and 
silt (e.g., smectite and kaolinite). This dynamic hummocky landscape, 
decorated by various geological features, together with a strong smell of 
sulfide at the site, make a visit to the Slumgullion landslide a remark
able experience, especially when under the influence of altitude sick
ness. 

2.2. Previous geodetic studies 

This prehistoric and reactivated landslide system has been re
cognized and studied since the 1800s (e.g., Endlich, 1876). The land
slide speed was first evaluated by comparing photographs taken at 
different times (e.g., Crandell and Varnes, 1961; Fleming et al., 1999). 
During the last few decades, geodetic point-based, e.g., creepmeters, 
extensometers, theodolite, Global Positioning System (GPS) and area- 
based, e.g., optical imagery and Synthetic Aperture Radar (SAR) tech
niques have been employed to measure the landslide deformation. 

In terms of the point-based observations, Jackson et al. (1996) used 
GPS measurements at seven sites during 4 days in June 1993 and es
timated displacement rates to be 12–15 mm/day in the center of the 
active slide. Savage and Fleming (1996) used three extensometers to 
measure the differential motion across the landslide margin for 
9 months starting April 1993 and found an increased sliding rate in the 
spring. Coe et al. (2000) obtained six sets of nineteen GPS observations 
during 2-day-long field campaigns between July 1998 and July 1999. 
The GPS data revealed that the landslide speed peaks between May and 
July in the middle and upper parts, whereas it peaks between March 
and May in the lower parts, which might be due to warmer tempera
tures and earlier snow melt at the ~500-m lower elevation (Coe et al., 
2003). Schulz et al. (2009b) used an extensometer to capture the 
landslide movements from July 2004 to October 2007. The ex
tensometer data, complemented by borehole pore-pressure observa
tions, show that landslide accelerations coincide with water table in
creases within the landslide body, while the pore pressure near the 
marginal shear zone drops, suggesting increased shear-induced dilation 
along the margins during landslide speed-up. Schulz et al. (2009a) 
compared hourly samples of extensometer-derived landslide speed with 
atmospheric pressure changes in March 2008 and found that daily ac
celerations are correlated with diurnal low tides of the atmosphere.  
Gomberg et al. (2011) relied on conventional robotic theodolite and 
extensometer measurements together with seismological observations 
during August 18–26, 2009 and provided qualitative evidence that di
latant strengthening along the margins regulates the landslide motion, 
as the increased slip velocity is concomitant with an increased fre
quency of stick-slip events along the lateral surfaces. Coe (2012) ana
lyzed GPS data from twelve summer field campaigns during 1998–2010 
to show a correlation between multi-annual changes of landslide mo
tion and a regional moisture-balance index, which is derived from 
precipitation and temperature records. Considering the anticipated 
changes in the moisture-balance drought index, Coe (2012) forecasted 
slowing landslide motions during future warming climates. 

SAR data have been widely used at the Slumgullion, but this is 
challenged by the rapid deformation of the landslide leading to a loss of 
coherence and limiting the ability to unwrap SAR interferograms.  
Milillo et al. (2014) made use of 1-day X-band spaceborne COSMO- 
SkyMed InSAR pairs between 2010 and 2013, and one set of 1-year- 
interval pixel offsets to capture the motions of the entire landslide.  
Delbridge et al. (2016) used L-band airborne UAVSAR data and gen
erated the 3D surface displacement fields for three sets of 1-week- 

interval interferograms from four tracks, collected in April, May and 
July 2012, respectively; and applied the 3D displacement field to infer 
the landslide thickness assuming mass conservation. Relying on another 
airborne SAR system, the Artemis SlimSAR, Cao et al. (2017) obtained 
similar displacement results using this compact, modular, and multi- 
frequency radar system. Wang et al. (2018a) used the 2011–2013 
UAVSAR data by tracking the pixel offsets on one single track and de
composing the time-series into linear and sinusoidal components. Hu 
et al. (2020) used a hybrid InSAR and pixel offset tracking method on 
2011–2018 UAVSAR data and InSAR time-series analysis of 2017–2018 
Sentinel-1 data to demonstrate the spatiotemporally varying displace
ments and to infer the landslide channel geometry and subsurface flux. 
By integrating the horizontal UAVSAR velocities and LiDAR-derived 
landslide thickness in the toe region, Hu and Bürgmann (2020) were 
able to estimate its viscosity assuming a Bingham plastic rheology. In
stead of using SAR data from air and space, Schulz et al. (2017) applied 
ground-based SAR operating at Ku-band and measured 1 week of 
ground motions in the summer of 2010, and also validated the mea
surements using GPS and extensometer data sets. 

3. Data and methods 

3.1. Remote sensing data 

Taking advantage of the airborne platform, the NASA UAVSAR 
system is superior to the spaceborne missions in its submeter-level re
solution (0.6 m in azimuth and 1.67 m in range), which improves our 
ability to characterize small-scale geological features in landslide ter
rain. We started with the freely available UAVSAR single-look complex 
(SLC) stack products that are already precisely coregistered using the 
GPS unit of the aircraft and the data itself to estimate and compensate 
for the variable motion between the tracks acquired by the NASA-JPL 
UAVSAR team (Hensley et al., 2009; Hensley et al., 2010; Bekaert et al., 
2019). The DEM used for motion compensation and topographic cor
rection is from the Shuttle Radar Topography Mission (SRTM) 1-arc- 
second (~30 m) version 2 acquired in 2000. In practice, the airborne 
UAVSAR system is operated on a modified NASA Gulfstream III airplane 
and has typical perpendicular baselines B⊥ of ~2 m and platform height 
hp of 12,500 m. Using the standard height sensitivity equations for 
InSAR (e.g., Rosen et al., 2000), we can calculate the displacement error 
Δdlos due to an elevation error Δht. 
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where λ is the radar wavelength, p is the slant range distance, and θ is 
the look angle. 

With the largest possible perpendicular baseline B⊥ (say 5 m) and 
the largest DEM error Δht (say 20 m), the line of sight maximal de
formation error Δdlos is 4.6 mm, which is negligible for Slumgullion 
moving at dozens of mm per day (S. Hensley, pers. comm. 2020). 
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The L-band (wavelength ~ 0.238 m) SAR sensor is also advanta
geous for maintaining coherence, compared to C- or X-band systems, 
although the volumetric decorrelation from vegetation is insignificant 
at Slumgullion. The prehistoric rapid failure and contemporary persis
tent movement have cleared most vegetation and only a few young 
trees remain, in contrast to the dense forest cover off the slide. On the 
other hand, snow cover during the wintertime is an inevitable natural 
phenomenon that dramatically deteriorates the coherence. Therefore, 
UAVSAR campaigns at Slumgullion were only deployed between April 
and November, except for one set of test flights during February and 
March 2017 not included in the analysis. In addition to the advantage of 
reduced volumetric decorrelation, the longer wavelength of L-band SAR 
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also results in less condensed InSAR fringes, which is favorable for 
unwrapping. 

The National Center for Airborne Laser Mapping (NCALM) collected 
the 0.5-m resolution LiDAR DEM at Slumgullion in July 2015 using an 
Optech Gemini near-infrared (NIR) LiDAR system (Cao et al., 2017) 
with an average of 40 pulses per square meter over the main landslide 
body. Since the Gemini system can measure up to four returns from 
each laser pulse, both a digital surface model (DSM) and a bare-earth 
DEM were obtained. In this study, we use the freely available bare-earth 
LiDAR DEM gridded and archived in OpenTopography to map the 
morphologic and structural features (Sections 4.4 and 5.1) and to infer 
the slope aspects (Section 5.2). 

3.2. Meteorological data 

A snow telemetry (SNOTEL) weather station (#762 at elevation 
3523 m), operated by the U.S. Department of Agriculture Natural 
Resources Conservation Service and National Water and Climate 
Center, is located ~3200 m southeast of the Slumgullion landslide 
(elevation 3000–3700 m). Two independent sensors are used to mea
sure the daily precipitation using transducers: the standing precipita
tion gauge captures and combines all forms of precipitation (rain and 
snow), and the snow pillow on the ground captures the existing amount 
of snow (converted to the equivalent thickness of water, a.k.a., snow 
water equivalent, SWE). 

Wind brings substantial uncertainties to the meteorological mea
surements. For example, the SWE sometimes unexpectedly exceeds the 
precipitation accumulation. This is because the precipitation gauge can 
“undercatch” the true amount that fell on windy days. While this can 
happen with both rain and snow, the issue is more prevalent with snow 
because it is more easily blown around by the wind. Beyond that, wind 
may blow additional snow onto the SWE pillow which lies on the 
ground surface, causing that data to surpass the accumulated pre
cipitation (Karl Wetlaufer, pers. comm. 2019). Hence, we need to use 
the data collected at a single site with some caution. 

Seasonality of precipitation is modest when considering the com
bined contributions of snow and ice. After integrating the precipitation 
gauge and SWE data, we find the precipitation mainly falls as snow 
from October to April and as rain for the rest of the year. The snowpack 
on the ground starts to melt in April as temperatures rise, with earlier 
melting at lower elevations and later melting at higher elevations. The 
fastest melting occurs in May and ends by the end of May or early June. 
The driest months of the year are June and July. Water year 2018 

(October 2017 to October 2018) represents an outstanding drought 
year (~400 mm annual total), accounting for only 61% of the 
1981–2010 average (~640 mm annual total), and 45% of the wettest 
year 1999 (~880 mm annual total) since the SNOTEL record started in 
1980 (ref: https://www.wcc.nrcs.usda.gov) (Fig. S1A). 

3.3. SAR interferometry and three-dimensional displacement extraction 

The performance of InSAR at Slumgullion is challenged by high 
displacement gradients that occur over short distances. The maximum 
resolvable displacement gradient of InSAR occurs when one full fringe 
fills up a single pixel (Baran et al., 2005). One fringe corresponds to the 
line-of-sight or range displacement of one half of the radar wavelength. 
To enhance the coherence, we apply 12 and 3 looks in the azimuth and 
range directions, respectively, corresponding to a pixel dimension of 
~7 m. Multi-looking can enhance the coherence but comes with re
duced spatial resolution. We found that interferograms of 12 by 3 looks 
and 1 by 1 looks are very similar. Using single-look InSAR will not 
change our observations and the conclusions of this study. The con
sequent maximum detectable displacement gradient is 1.7 × 10−2 (Hu 
et al., 2020). Phase aliasing occurs when the time intervals increase to 
more than about 1 month, and thus phase unwrapping across the ra
pidly deforming sections of the landslide is no longer possible. We fi
nally use the 16 short-time-interval (3–16 days) UAVSAR InSAR pairs 
with observations from three or four flight lines for the time-series 
displacement analysis (Table 1). 

Occasionally, long-wavelength ramps are evident for some InSAR- 
derived displacement fields that may be associated with water vapor 
gradients and aircraft orientation (yaw and pitch) changes (Jones et al., 
2010). The InSAR errors due to inaccurate knowledge of the aircraft 
motion has a long spatial scale, roughly 5–10 km, much larger than the 
size of the landslide. Atmospheric delay gradients are common for this 
landslide with an elevation difference of 700 m from head to toe (Parise 
and Guzzi, 1992). Given the limited number of acquisitions, the small 
size of the target area and high displacement gradients, the use of time- 
series inversion or independent weather models is not feasible to mi
tigate these atmospheric artifacts. Instead, we estimate a linearly fitted 
plane from off-slide targets to simulate and remove atmospheric phase 
and aircraft motion error components. 

A unique characteristic of the UAVSAR campaigns at the 
Slumgullion is that the sensor images the same displacement field 
spanning the same dates from up to four flight lines and thus different 
lines of sight. When three or more observations are available for the 

Table 1 
2011–2018 UAVSAR acquisitions over Slumgullion.            

Reference Secondary Days T30502 T03501 T12502 T21501 Independent observations  

1 20110812 20110819 7 + + + + 4 
2 20120416 20120423 7 + + + + 4 
3 20120423 20120509 16 + + + + 4 
4 20120509 20120517 8 + +  + 3 
5 20120724 20120801 8 + + +  3  

20130422 20130503 11 +    1 
6 20130503 20130510 7 + + + + 4 
7 20130510 20130520 10 + +  + 3  

20131025 20131101 7 +   + 2 
8 20140401 20140404 3 + + +  3 
9 20150428 20150504 6 + + + + 4 
10 20150504 20150512 8 + + +  3 
11 20160616 20160623 7 +  + + 3 
12 20161020 20161027 7 +  + + 3 
13 20171018 20171025 7 + + + + 4 
14 20171025 20171101 7 + + + + 4 
15 20180725 20180802 8 + + + + 4 
16 20181003 20181010 7 + + + + 4 

The symbol “+” means that data were acquired on both dates along the indicated flight line. Interferometric pairs are used for 3D displacement inversion when the 
number of independent observations is greater than three. All the listed interferograms are used for detecting high phase gradients.  
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given time span, we can invert for the complete 3D displacement field 
through the least-squares inversion (e.g., Hu et al., 2016; Delbridge 
et al., 2016), 

=G m d

where dn×1 contains the InSAR range-change observations, Gn×3 is the 
transformation matrix representing the east, north and up look vectors 
at the target pointing from the aircraft to the ground, which are 
available for each scene from the UAVSAR website, m3×1 is the 3D 
displacements to be solved; and n equals 3 or 4 in this study. We then 
divide the 3D displacements by the time interval to calculate the ve
locity and average over the 16 date pairs with at least three in
dependent observations (numbered in Table 1). 

3.4. Kinematic elements (KEs) outlined by wrapped interferograms 

Lineations of high active displacement gradients on the ground 
surface mirror the shallow geological discontinuities and associated 
fault structures. Maps of InSAR-derived velocities and velocity gra
dients can be used to identify localized deformation along tectonic 
faults (e.g., Price and Sandwell, 1998; Chaussard et al., 2015; Qu et al., 
2015; Hu et al., 2018b). Here we propose a simple method to extract 
the boundaries of the KEs based on the interferograms before un
wrapping (i.e., wrapped interferograms referred to as “interferograms” 
hereafter). In this case, we can also use interferograms with dense 
fringes where the correctness of subsequent unwrapping is not guar
anteed. Interferograms have abrupt phase changes from -π to π where 
the unwrapping algorithm is expected to either add or subtract 2π, yet 
the phase changes are sometimes ambiguous. The purpose of our 
method is to locate consistently high gradients in wrapped phases after 
adjusting to different reference points by conjugate multiplication of 
the complex value of the reference with every pixel in the scene, which 
is in essence phase subtraction. The use of multiple distributed re
ference points in each iteration introduces randomness in the positions 
of phase changes from -π to π; whereas the actual high displacement 
gradients remain stationary. Applying this procedure at Slumgullion, 
we first select reference points distributed on- and off- the landslide and 
consider two cases. In the first case, we use a total of 947 reference 
points regularly distributed in space (“x” in Fig. 2A). In the second case, 
we rely on only twelve reference points at specified locations (circles in  
Fig. 2A): one close to the active toe in the non-deforming downhill area, 
and the other eleven at the geometric centers of KEs 2–12; we do not 
consider KE 1 at the upper head because it often lacks coherent targets 

due to snow cover in late fall and early spring while the majority of the 
slide has already cleared. For both cases, we adjust the interferograms 
to those individual references. Second, we calculate the spatial phase 
gradients in the horizontal north ( )d

x and east ( )d
y directions given by 

+ ( )( )d
x

d
y

2 2
(e.g., Fig. 2B). Finally, we stack the gradients from the 

individual reference cases, allowing us to determine the targets always 
exhibiting high gradient values. This procedure is repeated for each 
interferogram and each flight line, and the gradient scores are summed 
and normalized. The merits of this method are severalfold. First, it 
provides an efficient and automatic routine to identify structural units 
moving at disparate rates. Second, it avoids unwrapping so that inter
ferograms with complicated phase patterns, for example those with 
longer time spans, remain usable (Table 1). And third, it is a geo-re
ferenced analysis and thus data from different platforms with variable 
trajectories and spatial resolutions can be easily integrated. We also 
apply this phase-gradient routine on C-band spaceborne Sentinel-1 data 
to outline the structures. Although the results are less clear than those 
from UAVSAR due to the reduced coherence and coarser resolution, 
their consistency in the general patterns provides the validation of our 
approach (Fig. S2). 

4. Results 

4.1. Distinct phase patterns among the kinematic structures 

The UAVSAR interferograms of the Slumgullion landslide represent 
ideal examples to illustrate the distinct phase representations of the 
same displacement field from varying slant-looking trajectories (Fig. 3). 
In examples of 7-day-interval 20110812-20110819 interferograms 
spanning 1 week, the phase changes and the inferred movements are 
modest in images obtained from flight lines T21501 and T03501 from 
perspectives almost normal to the slip direction, such that the move
ments are in the dead zone of the aircraft. On the other hand, the phase 
changes are distinct from the perspectives of the other two flight lines. 
In another example of 16-day-interval 20120423-20120509, the de
formation gradients at the boundaries between adjoining KEs 5–7 are 
not well resolved in flight lines T21501 and T03501, but these slide- 
parallel looking lines clearly capture the movement and boundaries of 
KE 11 at the northern tip of the toe. 

From the positions of high phase gradients in the interferograms, we 
remap the margins of the landslide and its KEs and compare our results 
with the margins mapped in field surveys of associated fault structures 

Fig. 2. Determination of landslide margins from multiple reference points. (A) The distribution of reference points: case 1 “x” and case 2 “o”. Some blanks are left in 
generally low coherence areas in case 1. (B) The normalized phase gradients determined from each of the four flight lines in case 2. 
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employed more than two decades earlier (Parise and Guzzi, 1992).  
Fig. 4 shows the normalized phase gradients for two reference cases, 
produced by summing and normalizing phase gradients from all inter
ferograms and flight lines with respect to a different set of reference 
points (Section 3.4). High gradients in red delineate the landslide ex
ternal margins and boundaries of some of the kinematic elements, in
cluding apparent minislides marked with black arrows. It turns out that 
the margins are better resolved when applying fewer (Cohen-Waeber 
et al., 2018) but tailored reference points, rather than many (947) but 
blindly selected reference points. For the multiple, random references 
case, both the signal and noise are enhanced, and the consequent 
signal-to-noise ratio declines in this study site. Overall, our simple 
method can effectively extract the external margins. The edge of the toe 
apparently shifted by ~40 m downhill from its location mapped in 
1991 (Parise and Guzzi, 1992), suggesting an average toe advance rate 
of ~1.5 m/yr between the UAVSAR data span (2011–2018) and the 
field survey (in 1991). Internal boundaries of many of the kinematic 
elements can also be resolved. A sharp phase gradient delineates the 
interface between KEs 11 and 12, and its position is shifted to the north 
by ~50 m compared to that in the 1991 map. The fastest and narrowest 

KEs 6–8 are also separated by bands of high phase gradient, although 
their distribution is somewhat patchy. This suggests that the longer- 
term landslide deformation not only advanced the margin at the frontal 
toe, but also relocated some of the internal KE boundaries. Moreover, 
we also pick up several apparent secondary minislides near the external 
margins (red patches pointed by arrows in Fig. 4) (Fleming et al., 1999), 
e.g., one on the southern edge of KE 1, one on the northern margin of 
KE 2, one at the conjunction of KEs 5–7 (reddish patches marked with 
arrows in Fig. 4) and also confirmed a previously identified secondary 
minislide near the southern margin of KE 10 (Delbridge et al., 2016). 

4.2. Three-dimensional displacements 

The 3D velocity maps from the average of the 2011–2018 UAVSAR 
measurements clearly reveal the magnitude and orientation of the 
landslide movements (Fig. 5). Like most low-gradient translational 
landslides, the Slumgullion moves primarily horizontally, and the spa
tial distribution of the inferred vertical motions is less coherent than the 
horizontal motions. The upper part of the landslide (KEs 1–5) moves 
consistently at up to 5 mm/day. Landslide speed changes abruptly in 

Fig. 3. Examples of wrapped UAVSAR interferograms imaged from different flight lines during two campaigns. (A) 20110812-20110819 (7 days). (B) 20120423- 
20120509 (16 days). One 2π phase cycle corresponds to 119-mm (half of radar wavelength) change in radar range directions (arrows besides the icons of aircraft). 

Fig. 4. The landslide structural margins and kine
matic elements inferred from the normalized phase 
gradients for two reference cases. The margins and 
kinematic elements mapped in 1991 (Parise and 
Guzzi, 1992) are superimposed as gray lines for 
comparison. Black circles show the positions of 12 
individual reference points used in the phase gra
dient analysis for case 2 (see Section 3.4). Black ar
rows indicate apparent minislides. 

X. Hu, et al.   Remote Sensing of Environment 251 (2020) 112057

6



the EW direction at KE 6 where the landslide channel becomes narrow. 
The adjacent KEs 6 and 7 have a sharp change of displacement in the NS 
direction. The narrowest KE 8 moves the fastest, with more than 10- 
mm/day horizontal motion. The northern part of the toe (KE 11) stands 
out by its northward motion at up to 2 mm/day. The high-resolution 
displacement maps also reveal some high-frequency signals in the main 
body of the landslide, likely due to irregular basal surfaces and dis
continuous geological structures. Some isolated deforming zones near 
the lateral margins (e.g., within the northwestern KE 7, southwestern 
KE 8, the southern side of KE 10) may suggest secondary minislides that 
we also noted in the previous section, and we will discuss the one in KE 
10 in detail. 

4.3. Time dependent landslide speed 

To investigate the time variations of the landslide speed, we take the 
spatial average of the 3D velocities over each of the kinematic elements 
(Fig. 6) and compare it to the estimated water content in the landslide. 
As the fluid form of water recharge is the key to regulate the pore 
pressures and thus the landslide motion, we infer the daily fluid water 
from snowmelt and rainwater using a temperature-based model and 
data simulation (Hu et al., 2020). The average daily water recharge 
from rainwater and snowmelt for the time periods considered is up to 
16 mm/day (20120423-20120509). Assuming diffusive transport, the 
normalized modeled pore pressures (Hu et al., 2020) at a nominal 10 m 
depth seems to only correlate with the first-order variations of the 
landslide speed, mostly evident in the east direction (Fig. 6A). The time 
series comparison between landslide velocities and precipitation at the 
minislide also presents some correlation (Fig. 7C). During the observing 
period from 2011 to 2018, the landslide moved the fastest in 2015 and 
the slowest in 2018, corresponding to relatively high and low water 
years, respectively (Figs. S1A & 6B). However, the linkage of landslide 
motion to the modeled pore pressure is not well established (R-square is 
0.21) as the daily rates are constrained by results from only a few days 
() and pore pressure comes from a simple 1D model not accounting for 
local variations in recharge from the inferred snowmelt and rainwater. 
The poor temporal resolution of the UAVSAR data limits our ability to 
reveal seasonal variations of the landslide speed, which were docu
mented from daily GPS observations (Coe et al., 2003; Schulz et al., 
2009a, 2009b, 2017). The median absolute deviation, i.e., median[abs 
(X – median(X))], of the daily landslide speed is estimated within each 
KE as a proxy for decorrelation, and large values are common when 
snow partially covers the slope in winter and spring, such as in the April 
2015 and October 2018 interferograms (Fig. 6C). The relationship be
tween the forms of precipitation and fluid recharge (e.g., from rain
water only, snowmelt only, undistinguishable, or none) and the land
slide velocity is not evident (Fig. S1B). 

4.4. Spatiotemporal displacements of the secondary minislide 

A small, secondary mobile body on top of the Slumgullion landslide, 
the “minislide” (Delbridge et al., 2016), appears in an isolated area 
within KE 10. The identification of such nested minislides is not new 
(e.g., Fleming et al., 1999; Delbridge et al., 2016), but here we in
vestigate its geometry and structural setting, its spatiotemporal beha
viors and plausible mechanisms of its formation (more discussion in 
4.1). The LiDAR DEM reveals that surface fractures and asperities, such 
as bumps and depressions, are clustered in this local area. We find 
several successive curvilinear features at the minislide toe that are in
dicative of shortening and thickening. In addition, we observe a lazy Z- 
shaped depression, reminiscent of a pull-apart basin (more discussion in 
4.1) at the internal head (Fig. 7A). The dimensions of the minislide are 
about 100 by 70 m. Relative to the main landslide body, it moves 
southward towards the southern flank of the Slumgullion. The temporal 
motion of the minislide with respect to a reference point on the adjacent 
landslide mass (Fig. 7C) is similar to that of the whole landslide as 
described in Section 4.3. That is, it moved the fastest in wet 2015 and 
slowed down substantially in dry 2018. 

5. Discussion 

5.1. Persistency and evolution of kinematic elements 

A comparison between the 2011–2018 InSAR-phase-determined 
external margins and internal boundaries and those from the 1991 field 
mapping (Parise and Guzzi, 1992) indicates overall consistency (Fig. 4), 
suggesting a coherent slow movement without substantial changes in 
the overall extent of the landslide body and arrangement of the prin
cipal internal kinematic structures during the last two to three decades. 
Considering the landslide material moves at a couple of centimeters per 
day, the material in fastest narrow sections moved by more than 100 m 
during that period. However, no evident shift of internal kinematic 
boundaries in the neck region of the Slumgullion is observed. This 
seems to suggest that these kinematic discontinuities are able to 
maintain stationary while the landslide materials are transported con
tinuously through them. Similarly, Coe et al. (2009) documented that 
the location of eight ponds on the Slumgullion remained stationary for 
~60 years, suggesting that the pond locations reflect depressions along 
the underlying basal surface of the landslide. The locations of persistent 
surface features, such as active internal fault zones and hydrological 
features, seem to be an imprint of relatively stable basal irregularities 
(Coe et al., 2009). On the other hand, the internal boundaries within 
the emergent toe and the frontal tip of the Slumgullion have advanced 
by several tens of meters during recent decades as the landslide over
rides the downslope terrain. 

Fig. 5. Three-dimensional surface velocities of the Slumgullion landslide averaged over 2011–2018 observations. Each dot has a 10-m dimension. The solid curves 
show the landslide external margins and internal boundaries mapped in 1991 (Parise and Guzzi, 1992), and the dashed lines show their shifted location at the toe 
inferred from the UAVSAR results. 
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5.2. Horizontal vector comparison between UAVSAR InSAR results and 
LiDAR DEM 

Spaceborne InSAR is sensitive to vertical and EW motions due to its 
polar orbits along ascending or descending trajectories. The consequent 
look vectors from all existing satellite SAR missions are nearly identical 
from the same orbital direction, i.e., ascending or descending. This will 
change in the future when the NASA-ISRO SAR (NISAR) mission is 
launched (planned for 2022) as it will operate with a left-looking or 
slightly south-looking SAR that is different from other SAR satellites 
that look to the right or slightly north. There are other analysis methods 
for satellite SAR that can measure along-track motion at coarser re
solution, including pixel offset tracking and multiple-aperture or along- 
track interferometry. These are less accurate than standard InSAR, so 

3D displacements using those measurements have less sensitivity to the 
north component of motion. To resolve a quasi-3D displacement field 
with existing satellites at full resolution, it is usually assumed that there 
is no NS motion, or some constraints are added on the moving direc
tions, such as fault-parallel in context of strike-slip faulting or downhill 
motion for mobile slopes. Thanks to the versatile airborne UAVSAR 
flight lines, we are able to extract the complete 3D displacements at full 
resolution and are thus able to test the latter assumption. Here we in
vestigate the consistency of the horizontal slip directions measured by 
UAVSAR interferograms and the downhill aspects estimated from the 
0.5-m resolution LiDAR DEM (Lee, 2015) (Fig. 8). Since this landslide 
surface has been highly modified, the 0.5-m resolution LiDAR DEM 
reveals great morphological complexity, but it can't yield a sensible 
slope aspect unless being downsampled. Assuming the slope of the basal 

Fig. 6. Variations of landslide speed in space and time. (A) The spatial average 3D velocity components (mm/day) and (C) median absolute deviation of daily 
landslide speed of the twelve kinematic elements for the time spans indicated. KE 11 presents northward motion with positive values (dark blue); otherwise, most of 
the active areas move westward and southward. (B) The normalized results of the average daily water recharge and the modeled pore pressure at nominal 10 m depth 
for each time period considered (Hu et al., 2020). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.) 
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surface follows the long-wavelength morphology of the ground surface, 
it is important to apply the downsampling. Here we resample the DEM 
by averaging boxes of 100 m and 300 m across to preserve the main 
topographic features before calculating the slope. Large variability in 
the DEM-derived slope aspects from different resampled spacing is 
evident in the steep head, the spreading-out toe, and the bends. There is 
no consistent answer on which of the downsampled DEM aspects fit the 
UAVSAR-derived vectors better. UAVSAR results are more consistent 

with the aspects generated by the 300-m DEM for the steep KEs 6 and 7, 
but for KE 10, the use of the 100-m DEM results in more consistency. 
Nonetheless, UAVSAR-measured landslide motion directions are unlike 
the slope aspects of either of the downsampled DEMs near the margins 
due to the edge effect of downsampling and slope aspect computation, 
for example, around the southern flanks of KE 12. Therefore, relying on 
a DEM to estimate the downhill movement from slant-looking SAR 
observations (e.g., Hilley et al., 2004; Hu et al., 2016) may be 

Fig. 7. Kinematics and surface structures at the secondary minislide. (A) The morphology of the minislide in shaded relief of LiDAR DEM superimposed by the 
horizontal displacement rates. The SW trending white line represents the lateral margin of the main landslide body. (B) Surface elevation superimposed by the 
horizontal velocity vectors. The black arrows are relative to an on-slide reference point to the NW of the minislide indicated by the black star; white arrows are with 
respect to the off-slide inactive terrain. Gray dotted lines outline the fan-shaped minislide. (C) The correlation between horizontal rates measured by UAVSAR InSAR 
with reference to the on-slide reference point and the daily and cumulative annual precipitation, reset to zero on October 1st. The error bars represent the mean 
absolute deviation of targets within the minislide. (D) Elevation profiles PP’ and QQ’ along the white line shown in panel B. (E) A conceptual sketch of right-lateral 
strike-slip faulting creating a pull-apart basin. A cross-sectional elevation profile reveals a local depression of 3.85 m. 

Fig. 8. Horizontal displacement vectors inferred from UAVSAR InSAR and 0.5-m resolution bare-earth LiDAR DEM, downsampled to 100 m and 300 m, respectively.  

X. Hu, et al.   Remote Sensing of Environment 251 (2020) 112057

9



problematic in some places due to the heterogeneous nature of land
slide deformation processes. 

5.3. Hypothesis on the formation of the secondary minislide 

The internally deforming and crumbly nature of the debris slide con
stantly creates and destroys geological features at the Slumgullion (Fleming 
et al., 1999). The persistence of the secondary minislide is enigmatic and 
remarkable and leads us to explore its initiation and kinematics. The min
islide is nested in an oversteepened area along the Slumgullion main body. 
The elevation profiles PP’ and QQ’ indicate ~20-m topographic relief within 
a horizontal distance of ~70 m, constituting a local slope of ~16° (Fig. 7B& 
D), twice of the average slope for the entire landslide (Parise and Guzzi, 
1992). Importantly, multiple sub-parallel strike-slip faults near the landslide 
margins gave birth to the secondary pull-apart basins which help enlarge 
the lateral channel width towards the distal end of the landslide. In parti
cular, the sides of the minislide overlap with geomorphological features of a 
pull-apart basin. The dimensions of this depressed basin are about 30 by 
10 m (Fig. 7E), and the consequent length-to-width ratio of three agrees 
well with observations of the geometry of pull aparts in natural tectonic 
regimes worldwide ranging from tens of meters to tens of kilometers in 
length (e.g., Aydin and Nur, 1982), and also falls in the range of 2.2–3.8 
found in experimental models (e.g., Basile and Brun, 1999). The acute angle 
between the oblique bounding faults of this pull-apart basin is almost 30°, 
consistent with a typical range of 30°-35° (e.g., Gürbüz, 2010). The depth of 
the pull-apart basin is predicted to be 2.44 m according to an empirical 
relationship with the length and width given by d = 0.1104 ∙ l − 
(8.755 × 10−2) ∙ w (Gürbüz, 2010), though the actual geometry clearly 
depends on the complex structures and details of sedimentation rates 
around the pull apart. On the other hand, the DEM-derived depth is 3.85 m 
taken from the mean height difference between the bottom to two nearby 
points at the sides of the inclined slope (Fig. 7E). The measured displace
ment fields validate the axial right-lateral strike-slip fault zone — the 
southeastern part moves N223°W at 13 mm/day while the northwestern 
part moves N124°W at 8 mm/day. Two sub-parallel right-lateral faults with 
a relative slip rate of ~5 mm/day created the pull-apart basin at their 
stepover. Overall, the internal toe of the minislide is bounded by streams 
incised in the landslide deposits. The abrupt increase in the slope angle, 
localized extension across the upper margin, and the persistent erosion at 
the internal toe help establish the kinematic environment for the formation 
of this secondary minislide, and also allow it to be moving more southerly 
than the surrounding mobile areas. 

6. Conclusions and implications 

Slow-moving landslides continuously create and destroy geological 
features during the mass wasting processes. Many of these geological 
structures formed in the landslide environment are miniatures of those re
sulting from plate tectonics. In this study, we focus on the Slumgullion 
landslide in Colorado, a dynamic system that includes various kinematic 
features. High resolution 3D surface displacement maps from multiple 
UAVSAR flight lines shed new light on details of the active landslide mar
gins and internal kinematic boundaries. To optimally exploit the UAVSAR 
interferograms, we propose a simple method to identify distinct kinematic 
elements from high phase gradients in wrapped interferograms with mul
tiple, distributed reference points. Validated by pre-defined structural maps 
from field observations and results from different SAR data sets, our method 
demonstrates confident detection of the external margins and some internal 
boundaries. We also confirm a shift of the toe edge and an internal 
boundary by a few tens of meters due to progressive spreading during the 
past two to three decades previously reported in Hu et al. (2020). This 
automated and efficient method can also be applied to identify other geo
logical displacement discontinuities such as those found in active fault 
zones. For a specific secondary minislide developed within the active main 
body, we analyze its displacements and kinematic characteristics. The 
shearing of subparallel right-lateral strike-slip faults create a pull-apart basin 

in between, bounding the upper part of the minislide. The dimensions of 
this pull-apart basin have similar scalings as those found in tectonic en
vironments. The formation of this minislide can be attributed to local ex
tension from the pull-apart basin along its lateral margin, erosion of its toe 
by incised streams, and the oversteepened slope at the site. Our results also 
demonstrate that the actual moving directions within the landslide can 
substantially deviate from the local slope aspects. Therefore, inferring the 
downhill movements simply from available DEM data (e.g., Hilley et al., 
2004; Hu et al., 2016) needs to be undertaken with caution. In addition, 
landslide speed variations during the available 16 UAVSAR short observa
tion periods are generally correlated with the water recharge from pre
cipitation and modeled pore-pressure changes from infiltration. Taking 
advantage of the high-resolution UAVSAR InSAR data, our work illustrates 
the suitability of airborne geodetic missions for detailed characterization of 
the internal landslide kinematics and thus for other rapid geological and 
geomorphological deformation processes. 
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